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Joint Optimization of Electric Vehicle and Home
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Duong Tung Nguyen and Long Bao Le,Senior Member, IEEE

Abstract—In this paper, we investigate the joint optimization of
electric vehicle (EV) and home energy scheduling. Our objective
is to minimize the total electricity cost while considering user
comfort preference. We take both household occupancy and EV
travel patterns into account. The novel contributions of this paper
lie in the exploitation of EVs as dynamic storage facility as
well as detailed modeling of user comfort preference, thermal
dynamics, EV travel and customer occupancy patterns in a
concrete optimization framework. Extensive numerical results
are presented to illustrate the efficacy of the proposed design.
Specifically, we show that the proposed design can achieve
significant saving in electricity cost, allow more flexibility in
setting the tradeoff between cost and user comfort, and enableto
reduce energy demand during peak hours. We also demonstrate
the benefits of applying the proposed framework to a residential
community compared to optimization of individual household
separately.

Index Terms—Electric vehicle, HVAC system, energy manage-
ment system, aggregator, day-ahead electricity price, occupancy
pattern, travel pattern, cost minimization, user comfort.

NOMENCLATURE

∆T Duration of time slot (hours)
δk Maximum acceptable temperature deviation when

housek is occupied (oC)
ηk Coefficient of performance (COP) of heater/AC in

housek
ηck,j Charging efficiency of EVjk
ηdk,j Discharging efficiency of EVjk
Λk,j,l Travel time of EVjk during trip l
Φs

i Solar irradiance in time sloti (kW/m2)
σk Dummy variable, “-1” for AC cooling, “1” for

heating
Ak The effective window area of housek
ak,i Occupancy state of housek in time slot i, “1” for

occupied, “0” otherwise
bk,j,i Availability state of EV jk in time slot i, “1” for

parking at home, “0” otherwise
C Thermal capacitance (kWh/oC)
dk,j,l Travel distance of EVjk during trip l (mile)
ei Electricity price at time sloti ($/kWh)
Ecap

k,j Battery capacity of EVjk (kWh)
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i Time slot index,i = 1, 2, . . . ,T
Jk Number of EVs in housek
k Household index,k = 1, 2, . . . , N
M Number of households
mk,j Travel efficiency of EVjk (kWh/mile)
N Number of time slots
P grid
i Imported power from the grid during time sloti

(kW)
P hvac,max
k Power rating of heater/AC in housek (kW)

P hvac,out
k,i Output power of heater/AC in housek at time slot

i (kW)
P hvac
k,i Power supplied to heater/AC in housek at time slot

i (kW)
P ev,c
k,j,i Charging power of EVjk at time sloti (kW)

P ev,d
k,j,i Discharging power of EVjk at time sloti (kW)

P ev,c,max
k,j Maximum charging power of EVjk (kW)

P ev,d,max
k,j Maximum discharging power of EVjk (kW)

psk The fraction of solar radiation entering the inner
walls and floor

R Thermal resistance between two heat exchange me-
dia (oC/kW)

SOCk,j,i State of charge of EVjk at time sloti
SOCmax

k,j Maximum allowable state of charge of EVjk
SOCmin

k,j Minimum allowable state of charge of EVjk
T a
i Ambient temperature in time sloti (oC)

T d
k,i Desired indoor temperature of housek in time slot

i (oC)
T e
k,i The temperature of the house envelope (oC)

T in
k,i Indoor temperature of housek in time slot i (oC)

Tm
k,i The temperature of the thermal accumulating layer

in the inner walls and floor (oC)
t
(1)
k,j,l Time slot index when EVjk leaves home for tripl

t
(2)
k,j,l Time slot index when EVjk returns home for trip

l
wk Weighting coefficient between electricity cost and

discomfort cost for housek ($/oC)

I. I NTRODUCTION

Demand side management in the residential sector (i.e.,
residential buildings) is an important research topic since
buildings contribute a significant fraction of overall electricity
consumption. In fact, it accounted for 72% of total U.S.
energy consumption in 2006 out of that residential buildings
accounted for 51% according to the U.S. Environmental Pro-
tection Agency (EPA) [1]. This research topic has received
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lots of attention from the research community [2]–[8]. In [2],
Shengnanet al. assessed the use of demand response as a load
shaping tool to improve the distribution transformer utilization
and avoid overloading for the transformer. Mohsenian-Rad
et al. [3] proposed an optimization framework that aims to
minimize electricity bills considering user comfort. However,
the assumption on homogeneous appliances and using waiting
time to represent user comfort in this paper would be too
simple to represent different characteristics of home appliances
and user requirements.

In a typical household, thermostatically controlled appli-
ances (TCAs) including refrigerator, electric water heater, and
the heating, ventilation, and air-conditioning (HVAC) system
account for more than half of total residential energy con-
sumption [1]. Research on optimal control for TCA loads has
been a hot research topic in the last several years. References
[4] and [5] proposed optimal control schemes to minimize
the electricity cost for the HVAC system considering user
climate comfort. Dynamic programming was employed in
[6] to compare several optimal control algorithms applied
to a thermostat. In [7], the authors introduced an appliance
commitment algorithm that schedules electric water heater
power consumption to minimize user payment.

Electric Vehicle (EV) is another important grid element
that has significant economic and environmental advantages
compared to normal cars. The penetration of EVs is expected
to increase drastically in the next few years, which can reach
one million by 2015 in US [9]. Therefore, EV charging will
have significant impacts on the power distribution network if it
is not controlled appropriately [10]–[12]. EV travel pattern is
an important factor to model potential impacts of EVs on the
grid [13], [14] and to develop efficient EV charging strategies
[15]. Given electricity prices and EV driving pattern, Rotering
et al. proposed a dynamic programming based control scheme
to optimize the charging for one EV [16]. In [17], Wuet al.
considered load scheduling and dispatch problem for a fleet
of EVs in both the day-ahead market and real-time energy
market. In [18], an optimal charging strategy for EVs was
proposed that considers voltage and power constraints.

The problems of scheduling of home energy usage and EV
charging are often addressed separately in the literature.In this
paper, we propose a unified optimization model that jointly
optimizes the scheduling of EVs and TCAs. In particular,
we utilize EVs as dynamic storage facility to supply energy
for residential buildings during peak hours where energy
can be transferred from EVs to charge other EVs and to
provide energy for HVAC in a residential community. Our
proposed model aims to minimize the total electricity cost
considering user comfort, house occupancy and EV travel
patterns, thermal dynamics, EV electricity demand, and other
operation constraints. There are some recent works that discuss
potential benefits of vehicle to building interactions [19], [20].
However, to the best of our knowledge, none of previous works
have considered detailed design and joint optimization of EV
and building energy management. The main contributions of
this paper can be summarized as follows:

• We propose a comprehensive model to optimize the EV
and HVAC scheduling in a residential area. The formula-
tion aims to achieve flexible tradeoff between minimizing

total electricity cost and maintaining user comfort pref-
erence. The model accounts for the characteristics of the
HVAC system, thermal dynamics, user climate comfort
preference, battery state model, user travel patterns, and
household occupancy patterns. We also discuss potential
extensions of the proposed framework to capture various
modeling uncertainty factors.

• We show the impacts of different design and system
parameters, which control the electricity cost and user
comfort, on the system operation and performance as well
as the economic benefits of applying our proposed control
framework compared to a non-optimized control scheme
for a single-house scenario.

• We illustrate the advantages of applying the proposed
control model for the multiple-house scenario compared
to the case where each household optimizes its energy
consumption separately. Specifically, we demonstrate that
optimization of EV and home energy scheduling for
multiple houses in a residential community can achieve
the significant saving in electricity cost and reduce the
high power demand during peak hours.

The remaining of this paper is organized as follows. The
system model is presented in Section II. Thermal dynamics
model is described in Section III. Detailed problem formula-
tion is described in Section IV. The case studies and numerical
results are provided in Section V followed by conclusion in
Section VI.

II. SYSTEM MODEL

We consider the interaction among EVs and HVAC systems
in the residential community. We assume that there is an
aggregator that collects all required information from EVsand
HVAC systems from all households to make control decisions.
At the higher level, several aggregators can be connected toa
central aggregator that coordinates the overall operations and
participates in the wholesale day-ahead electricity market. The
day-ahead market clearing price is assumed to be available to
any aggregators before the operating day. The system model
under consideration is illustrated in Fig. 1.

We consider a time slotted model where there areN time
slots in the optimization period (e.g., 24 hours for one-day
optimization period) and energy scheduling decisions are made
for each time slot.1 Based on the pricing information and
electricity demand, each aggregator decides how much energy
it should import from the grid at each time slot and how to
allocate and schedule the energy usage and to exchange energy
among its components including HVAC and EVs. We assume
that EVs can only be charged or discharged when they are
parked at home (i.e., each household is equipped with the
charging facility).

The slow thermal dynamic characteristics of buildings pro-
vides a great opportunity for demand side management since
the building mass can be considered as a thermal storage
facility. In particular, we can schedule the power consumption

1The thermal dynamics and energy scheduling model that we consider in
this paper is in discrete-time, which is commonly assumed in the literature.
Under this model, we assume that the thermal dynamics can reach its steady
state in each time slot quickly so that the corresponding transient time can be
neglected.
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Fig. 1. System model

of HVAC systems flexibly while respecting users climate
comfort because the indoor temperature changes quite slowly.
By cooperating the energy scheduling of HVAC systems and
EVs, it is expected that larger cost saving can be achieved com-
pared to the case where we schedule these loads separately.
Specifically, during high price hours, the energy discharging
from an EV could be used to supply for other EVs and HVAC
systems or can be sold back to the main grid. In the case we
do not allow to sell EV discharging power back to the grid, the
discharging power from EVs is assumed to only flow within
the community network. In this paper, the term V2G (Vehicle-
to-grid) refers to the case where selling back electricity to the
main grid is allowed.2

III. B UILDING THERMAL DYNAMIC MODEL

To formulate the HVAC and EV scheduling problem, we
need to model the dynamics of indoor air temperature and the
characteristics of HVAC load in each household. In fact, mod-
eling thermal dynamic of buildings is an important research
topic that has been extensively studied in the literature. Among
existing modeling methods for building thermal dynamics, the
grey-box approach appears to be one of the most popular
ones. In this approach, we combine the physical knowledge
about the building and experimental data to obtain a reasonable
model for the building thermal dynamics [21]–[27]. Based
on the energy balance and mass balance equations for the
indoor air, a continuous time linear state space model, which
is a set of first-order differential equations, can be constructed
[26]–[28]. It is also called equivalent thermal parameter model
(ETP) [7]. Then, experimental data is used to estimate building
thermal parameters of the constructed model [23]–[27] .

In the following, we present a thermal dynamic model for
a residential housing. For householdk, the indoor tempera-
ture can be expressed as a function of the housing thermal
characteristics (thermal resistance, thermal capacitance, win-
dow area), the weather condition (ambient temperature, solar
radiation, wind speed, humidity), internal gains (occupants,

2In general, V2G can refer to the case where EVs are allowed to discharge
energy regardless of whether the premises become a net supplier to the main
grid.

cooking, refrigerator, etc.), and the HVAC input power. Hence,
we have

Tk,i+1 = f(Tk,i, P
hvac,out
k,i , other inputs and parameters). (1)

For simplicity, we make the following assumptions.
• Each house is modeled as a large room exchanging

thermal energy with the ambient environment. The in-
door temperature is uniformly distributed within a house,
which can be considered as the equivalent indoor tem-
perature.

• If the household has more than one AC/heater (e.g., one
AC/heater for each room) then the thermal output power
from these ACs/heaters are gathered and considered as
one aggregate AC/heater with the output power equal
to the total output power of individual ACs/heaters [22],
[23]. In practice, a central HVAC system can provide all
cooling/heating loads of buildings [28], [29].

• The impact of disturbances such as humidity, internal heat
gains, wind speed on the building thermal dynamics is
assumed to be negligible compared to the influence of
the ambient temperature, the solar radiation power, and
HVAC power input.

Note that these assumptions are commonly made in the
literature [23]–[25], [28]. The thermal energy from solar
irradiance through windows can be calculated as [23]

Qs
k,i = Φs

iAk (2)

whereΦs
i is the solar irradiance andAk is the effective window

area of housek.
Assume that all energy flux by solar radiation through

windows is absorbed by the heat accumulating layer in the
inner walls and the indoor air. We definepsk as the fraction of
solar radiation entering the inner walls and floor of housek,
then the rest of the solar energy is absorbed by the indoor air,
i.e., we have

Qs,wall
k,i = pskQ

s
k,i

Qs,air
k,i = (1− psk)Q

s
k,i (3)

whereQs,wall
k,i and Qs,air

k,i denote these two energy fractions,
respectively. In general, heat transfer occurs when there is a
temperature difference between two spaces. Thermal energy
is transferred from a higher temperature space toward a lower
temperature space due to conduction, convection, and radiation
[23]. Based on heat transfer mechanisms, we construct the
energy balance equations, which consequently result in a third
order linear model for thermal dynamics of housek as follows
[23]:

Cm
k

dTm
k

dt
=

1

Rm
k

(Tk − Tm
k ) +Akp

s
kΦ

s
k

Ce
k

dT e
k

dt
=

1

Re
k

(Tk − T e
k) +

1

Rea
k

(T a − T e
k)

Ck

dTk

dt
=

1

Ra
k

(T a − Tk) +
1

Rm
k

(Tm
k − Tk)

+
1

Re
k

(T e
k − Tk) +Ak(1− psk)Φ

s
k + σkP

hvac,out
k .

(4)

whereσk = 1 corresponds to the winter time andσk = −1
for the summer time. Other parameters are defined as
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• Ra
k is the resistance between room air and the ambient

(oC/kW).
• Rm

k is the thermal resistance between room air and the the
thermal accumulating layer in the inner walls and floor
(oC/kW).

• Re
k is the thermal resistance between room air and the

the house envelope (oC/kW)
• Rea

k is the thermal resistance between the house envelope
and the the ambient (oC/kW).

• Ck is total thermal capacitance of the indoor air
(kWh/oC).

• Cm
k is the total thermal capacitance of the inner walls

(kWh/oC).
• Ce

k is the total thermal capacitance of the house envelope
(kWh/oC).

The equivalent thermal parametersRa
k, Rm

k , Re
k, Rea

k , Ck,
Cm

k , Ce
k, and psk are assumed to be constant, which can be

estimated by using the Maximum Likelihood (ML) method
based on measured data [23]–[25], [27]. Therefore, the thermal
dynamics ofk-th house can be rewritten in the deterministic
linear state space model in continuous time as

dTk

dt
= ATk +BUk

T r
k = CTk (5)

where Tk = [T in
k Tm

k T e
k ]

′ is the state vector and
Uk =[Ta Φs σkP

hvac,out
k ]′ is the input vector to the system.

The output of interest isT r
k = T in

k because we are interested
in the indoor temperature, which directly impacts user climate
comfort. Matrix A represents the dynamic behavior of the
system, and matrixB captures the impact of input elements
(ambient temperature, solar radiation, and HVAC power) on
the system behavior. The matrices in the state space model (5)
are given as follows:

A =







a11 a12 a13

a21 a22 0

a31 0 a33






(6)

where the underlying coefficients are defined as

a11 =
−1

Ck

(

1

Ra
k

+
1

Rm
k

+
1

Re
k

)

a12 =
1

Rm
k Ck

; a13 =
1

Re
kCk

a21 =
1

Rm
k C

m
k

; a22 = −
1

Rm
k C

m
k

a31 =
1

Re
kC

e
k

; a33 = −
1

Ce
k

(

1

Rea
k

+
1

Re
k

)

B =









1
Ra

k
Ck

Ak(1−ps
k)

Ck

1
Ck

0
Akp

s
k

Cm
k

0
1

Rea
k
Ce

k

0 0









C =
[

1 0 0
]

.

The state space model in continuous time (5) can be
transformed into the equivalent discrete time model by using

Euler discretization (i.e., zero-order hold) with a sampling time
of Ts [23], [27] as

Tk,i+1 = AdTk,i +BdUk,i

T r
k,i = CdTk,i

(7)

where

Ad = exp(ATs) = 1 +ATs +
A2T 2

s

2
+ . . .

Bd =

∫ Ts

0

exp(Aτ)dτB; Cd = C

This discrete time thermal dynamic model will be used in the
following energy scheduling problem formulation.

IV. PROBLEM FORMULATION

We present the joint EV charging and home energy man-
agement problem for cost minimization in this section. First,
the total electricity power imported from the grid at time slot
i can be written as

P grid
i =

M
∑

k=1

P hvac
k,i +

M
∑

k=1

Jk
∑

j=1

[

P ev,c
k,j,i − P ev,d

k,j,i

]

, (8)

which is equal to EV charging power plus power usage of
the HVAC system minus the EV discharging power summed
over all households. The aggregator aims to minimize the
total electricity cost and user discomfort during a scheduling
horizon. We assume that there is no electricity losses in the
transmission lines among EVs and HVAC systems. This as-
sumption is reasonable since the transmission lines for energy
exchange in a community are relatively short. Moreover, EV
charging is assumed to be continuously controllable in our
control model. The objective and constraints of the underlying
optimization problem are described in the following.

A. Objective Function

The objective function consists of two parts. The first part
is the total electricity cost which can be expressed as

Jelec =

N
∑

i=1

M
∑

k=1

P grid
i ei∆T. (9)

Substitute the result of (8) into (9), we have

Jelec =
N
∑

i=1





M
∑

k=1

P hvac
k,i +

M
∑

k=1

Jk
∑

j=1

[

P ev,c
k,j,i − P ev,d

k,j,i

]



 ei∆T.

(10)
The second part of the objective function is the discomfort
cost. It is assumed that each householdk will inform its
preferred temperatureT d

k,i for each time sloti when the
house is occupied and a maximum acceptable deviationδk
to the aggregator. Then, the aggregator controls the power
supplied to HVAC system so that the temperature lies within
the acceptable range[T d

k,i − δk, T
d
k,i + δk] in each occupied

house k. The closer to the desired temperature, the more
comfortable users would be. There is no indoor temperature
constraint for the period when the house is unoccupied. The
power supplied to an HVAC system at time sloti will decide
the temperature at time sloti+1, which consequently affects
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user comfort at time sloti+ 1 but time sloti. Therefore, we
define the discomfort cost function as

Jdiscomfort =

N
∑

i=1

M
∑

k=1

wkak,i+1|T
in
k,i+1 − T d

k,i+1|, (11)

where ak,i+1 represents the occupancy status of housek
at time slot i + 1. If ak,i+1 = 0, the discomfort cost for
housek at time slot i + 1 is equal to zero regardless of
the indoor temperature at that time slot because the house
is not occupied. The weighting factorwk can be viewed as
the price ($) that aggregator has to pay householdk when
the temperature in housek deviates 1oC from the desired
temperature in each time slot. The value ofwk will influence
the optimal solution of the underlying optimization problem.
The objective function, which is the sum of electricity cost
and the discomfort cost, can be written as follows:

Jtot =

N
∑

i=1





M
∑

k=1

P hvac
k,i +

M
∑

k=1

Jk
∑

j=1

[

P ev,c
k,j,i − P ev,d

k,j,i

]



 ei∆T

+

N
∑

i=1

M
∑

k=1

wkak,i+1|T
in
k,i+1 − T d

k,i+1|

(12)

We are now ready to describe all constraints for the considered
optimization problem.

B. Thermal Constraints

1) Thermal Dynamics Model: The thermal dynamics model
for a residential house has been presented in Section III. It
can be seen from equation (7), for each household, the indoor
temperature at the next time slot is determined by the current
indoor temperature (T in

k,i), the current outdoor temperate (T a
i ),

the solar radiation power (Qs
k,i), and the output power of the

HVAC system (P hvac,out
k,i ) at the current time slot. The output

power is related to the power supplied to the HVAC system as
P hvac,out
k,i = ηkP

hvac
k,i whereηk is the performance coefficient

of the HVAC system in householdk. The discrete time thermal
dynamic model (7) represents one constraint of the considering
optimization problem (T r

k,i = T in
k,i).

2) Temperature Constraints: Each household informs its
desired temperature to the aggregator. Then, the aggregator
controls power supplied to the HVAC system in the house
at each time slot to keep the indoor temperature as close as
possible to the desired temperature. The indoor temperature
requirement for each house is expressed as

ak,i|T
in
k,i − T d

k,i| ≤ δk, (13)

for k = 1, 2, . . . ,M and i = 2, . . . , N + 1. There is no
temperature requirement when a house is not occupied. Note
that the power provided to an HVAC system in the current
time slot will affect the indoor temperature in the next time
slot, so the temperature constraint is only applied from the
second time slot.

3) HVAC Power Constraints: The power supplied to an
HVAC system cannot be negative and it cannot take values
greater than the heater/AC’s power rating. Therefore, we have

0 ≤ P hvac
k,i ≤ P hvac,max

k , (14)

for k = 1, 2, . . . ,M and i = 1, . . . , N .

Remark 1: In our proposed system model, each household
needs to report its desired temperature at each time slot
during which the household is occupied as well as the level of
discomfort (i.e., parameters δk) to the aggregator to determine
the optimal control solution. In practice, if a particular user
does not wish to report its desired temperature in the occupied
time slots to the aggregator then the aggregator can simply
choose a typical temperature value for this household to
calculate the optimal solution.

C. SOC and Charging Power Constraints

For EVs, we need to model the characteristics and the travel
patterns for each EV. In particular, we are interested in the
battery capacity (kW ), the travel efficiency (kWh/km), and
the charging type. These properties can be retrieved from the
manufacturer’s website. The travel pattern of each EV can be
described by the number of trips per day, the starting and
ending times, and the travel distance of each trip. A trip is
defined as the time period between the instants when the
EV leaves and arrives home. This information is related to
user traveling schedule, which can be sent by users to the
aggregator before the operating day. In Section V, we use
the real-world travel pattern data from the 2009 National
Household Travel Survey [30] to build travel patterns used
to obtain numerical results.

1) SOC Dynamics: Assume that each EVj of housek
can take several trips during the optimization period (e.g., one
day). Lett(1)k,j,l andt(2)k,j,l be the time slots when EVj of house
k leaves and arrives home for tripl, respectively. Then, we
have following constraints

SOCk,j,i+1 = SOCk,j,i +
ηck,jP

ev,c
k,j,i∆T

Ecap
k,j

−
P ev,d
k,j,i∆T

ηdk,jE
cap
k,j

,

if i /∈ [t
(1)
k,j,l, t

(2)
k,j,l), ∀k, i, j, l (15)

SOCk,j,i+Λk,j,l
= SOCk,j,i −

dk,j,l ∗mk

Ecap
k,j

,

if i = t
(1)
k,j,l, ∀k, i, j, l (16)

SOC
k,j,t

(2)
k,j,l

≤ SOCk,j,i ≤ SOC
k,j,t

(1)
k,j,l

,

if i ∈ [t
(1)
k,j,l, t

(2)
k,j,l], ∀k, i, j, l. (17)

Here, the SOC for EVj of housek changes according to
the charging and discharging powers when it parks at home
(15) and the difference of SOCs at leaving and returning home
instants accounts for the energy usage in driving (16). Equation
(17) ensures that the SOC level is non-increasing when an EV
travels.
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2) SOC Constraints: To maintain long lifetime of battery,
an EV should maintain its battery level within a certain range
that is recommended by its manufacturer [31]. Therefore, we
impose the following constraints

SOCmin
k,j ≤ SOCk,j,i ≤ SOCmax

k,j , ∀l (18)

whereSOCmin
k,j andSOCmax

k,j denote the minimum and maxi-
mum recommended SOCs for EVj of housek.

3) Charging and Discharging Constraints: We assume that
an EV is only charged or discharged when it is parked at
home. Moreover, EVs are connected to home chargers as soon
as they arrive home. Therefore, constraints on charging and
discharging power applied to only time slots when an EV is
parked at home as

0 ≤ P ev,c
k,j,i ≤ bk,j,iP

ev,c,max
k,j

0 ≤ P ev,d
k,j,i ≤ bk,j,iP

ev,d,max
k,j .

(19)

wherebk,j,i represents the availability of EVj of housek at
home during time sloti, P ev,c,max

k,j and P ev,d,max
k,j denote the

maximum charging and discharging limits, respectively. From
these constraints, the charging and discharging powers foreach
EV j of householdk (i.e., P ev,c

k,j,i andP ev,d
k,j,i) are equal zero if

the EV is not at home (i.e., asbk,j,i = 0).

D. Grid Constraints

If it is not allowed to sell EV discharging energy back to
the main grid, the energy imported from the grid in each time
slot must be non-negative and it must be upper-bounded by
some predetermined limit. Hence, we have

0 ≤ P grid
i ≤ Pmax

i , (20)

or

0 ≤

M
∑

k=1

P hvac
k,i +

M
∑

k=1

Jk
∑

j=1

[P ev,c
k,j,i − P ev,d

k,j,i] ≤ Pmax
i , (21)

where Pmax
i is the maximum power that can be imported

from the grid, which can be a contracted amount between the
aggregator and the grid, or a particular parameter capturing
grid conditions over time. In contrast, if the selling EV
discharging energy service is allowed and the maximum power
that can be sold back to the main grid is equal toPmax

i . Then,
we have the following constraint

−Pmax
i ≤

M
∑

k=1

P hvac
k,i +

M
∑

k=1

Jk
∑

j=1

[P ev,c
k,j,i − P ev,d

k,j,i] ≤ Pmax
i . (22)

For simplicity, we assume that the selling back electricityprice
is equal to the buying electricity price. In summary, we can
formulate the EV charging and HVAC scheduling to minimize
the cost functionJtot given in (12) as

min

N
∑

i=1





M
∑

k=1

P hvac
k,i +

M
∑

k=1

Jk
∑

j=1

[

P ev,c
k,j,i − P ev,d

k,j,i

]



 ei∆T

+

N
∑

i=1

M
∑

k=1

wkak,i+1|T
in
k,i+1 − T d

k,i+1|

subject to

constraints(7), (13)− (19)

constraints(21), if no V2G

constraints(22), if V2G (23)

where the optimization variables areP ev,c
k,j,i, P

hvac
k,i , andP ev,d

k,j,i.
Despite the absolute term in the objective function of our
model, this optimization problem can be transformed into
an equivalent linear program by introducing some auxiliary
variables [32]. Thus, the aggregator can easily calculate and
implement its optimal solution upon collecting all required
information.

It can be observed that we do not impose constraints in
the optimization problem (23) to prevent any EVj of house
k from charging and discharging simultaneously at any time
slot i (i.e.,P ev,c

k,j,i andP ev,d
k,j,i for any EV j of housek are both

positive at the same time sloti). In fact, this is not needed
since the optimal solution of (23) always satisfies these hidden
constraints.

E. Extensions to Consider Modeling Uncertainties and Other
Residential Loads

In the above formulation, we have assumed that all modeling
parameters such as outdoor temperature, household occupancy
pattern, and EV travel pattern are known without errors and
the thermal dynamics model is perfect. In practice, they have
to be estimated with potential errors. We can employ the
Model Predictive Control (MPC) technique to tackle these
estimation uncertainties [33], which can be implemented as
follows. The MPC controller solves the minimization problem
(23) for the prediction horizonN0 from current time slott to
time slot t + N0 with assumption that estimated parameters
are certain ones (i.e., no estimation errors). The uncertainties
are compensated by refinement and update of the prediction
at each time step. The sequences of control variables such as
power consumption of HVAC and EVs are calculated for the
whole prediction horizon; however, the controller appliesonly
the control action for the first time slot. The MPC controller
repeats the process at next time step, solving new optimization
with the most updated data for the new time horizon shifted
one step forward.

We have only considered EVs and HVAC systems in our
proposed optimization framework so far. However, integration
of other types of residential loads into this framework is
possible. Moreover, extension of our system model to consider
distributed renewable energy sources is also possible. Here,
the MPC technique can be employed again to tackle the
uncertainty due to the intermittent nature of the underlying
renewable sources (e.g., wind or solar energy).
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V. NUMERICAL RESULTS

We present numerical results to illustrate the desirable
performance of the proposed framework. We assume that the
outdoor temperature and solar irradiance can be predicted
perfectly. The temperature data is taken fromWeather Un-
derground website [34], and the solar irradiance data is taken
from the Renewable Resource Data Center (RReDC) website
[35]. Solar radiation power contributes to increase the indoor
house temperature; therefore, it results in more cooling energy
needed in the summer and less heating energy needed in the
winter. Moreover, the solar irradiance is low during the winter
months and high during summer months as we can observe in
Fig. 2(d). Hence, the decreasing amount of heating energy
required in the winter is relatively small compared to the
increasing amount of cooling energy needed in the summer.

For the electricity price data, we use day-ahead pricing
data retrieved from PJM [36]. We will first evaluate the
performance of our control scheme for a single-house scenario.
Then, we investigate the benefits of applying the control
strategy in the multiple-house setting. Results for the single-
house scenario are presented to reveal insights into the inter-
action among the HVAC system, EV, pricing, and temperature
patterns.

When solving the joint scheduling optimization for EVs
and HVAC systems we setσk = −1 and σk = 1 for all k
corresponding to the summer and winter time, respectively.
The optimization period is one day with 24 time slots each of
which is one hour (N = 24, ∆T = 1). Fig. 2(a) shows the
day-ahead electricity prices of a typical summer and winter
weekdays, which are used to obtain numerical results. Three
different temperature profiles for summer days (very hot, hot,
mild) and winter days (very cold, cold, mild) are considered
to represent the diversity of weather conditions, as shown in
Fig. 2(b) and Fig. 2(c), respectively. The average hourly solar
irradiance profiles for the summer and winter cases used in
the simulation are shown in Fig. 2(d). We use CVX [37] to
solve the proposed optimization problem.

A. Single-house Scenario

We analyze the performance due to our proposed optimal
scheme to the single-house scenario. For simplicity, we assume
that the considering residential house has only one EV and one
HVAC where the varying ownership aspect will be captured
later in Section V.B for the multiple-house case. The housing
thermal parameters includingRa

k, Rm
k , Re

k, Rea
k , Ck, Cm

k , and
Ce

k are taken from [23]. We assume that the house is equipped
with a heat pump which can be operated in both heating and
cooling modes. The parameters of the heat pump are set as
follows: power ratingP hvac,max

k = 4 kW and HVAC coefficient
of performance (COP)ηk = 3. We consider Nissan Leaf EVs
whose specifications are obtained from [31] with the following
parameter setting: battery capacity of 24 kWh; maximum
charging and discharging power (P ev,c,max

k andP ev,d,max
k ) are

set equally to 6 kW [38]; charging and discharging efficiency
factors (ηc andηd) are both set equal to 0.9; travel efficiency
is 0.316 kWh/mile; andSOCmax

k,j = 0.9, SOCmin
k,j = 0.2. The

initial SOC of the EV is set equal to 0.5. To obtain numerical
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Fig. 2. Electricity price and weather profiles

results for the single-house scenario, we simply setM = 1 in
all related constraints and quantities.

We assume that the EV’s owner leaves home at 8 A.M and
comes back at 5 P.M. Driving distance is assumed to be 32
miles, which is the average daily travel distance in US [17],
[30], [41]. This is a typical driving pattern [16] in US, which is
used to obtain the numerical results in several scenarios below.
However, other different driving patterns are also examined
where we will investigate the impacts of varying departure
time, arrival time, and travel distance on the optimal solution.
In addition to the above parameter settings for HVAC system
and EV, the power limitPmax

i is set equal to 25 kW. The
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Fig. 3. Impacts of parametersw andδ on electricity cost (No V2G )

desired indoor temperature in summer days and winter days
are 23oC and 21oC, respectively. Initial temperature at 0 A.M
is assumed to be equal to the desired indoor temperature.
Assuming that the considered house is occupied all day, so
the desired indoor temperature is equal to 23oC (summer) or
21oC (winter) at every time slot.

Fig. 3(a) and Fig. 3(b) show the impacts of parametersδ
and w on the total electricity cost in a summer day and a
winter day, respectively. The weighting factorw is varied in
a certain interval, andδ takes one of three values: 1oC, 2oC,
and 3oC. To enforce the stricter user comfort requirement,
we would choose a higher value forw and a smaller value
for δ. These figures show that the electricity cost increases
as w increases. This is intuitive since the cost of electricity
increases with stricter user comfort requirement. Moreover,
for small values ofw (i.e., w < 0.04 $/oC for the summer
day, andw < 0.025 $/oC for the winter day), the electricity
cost decreases asδ increases. This is because small values of
w allow the indoor temperature to deviate more significantly
from the preferred value to save electricity cost, especially for
large values ofδ. However, asw becomes sufficiently large
(i.e.,w > 0.1 $/oC for the summer day, andw > 0.07 $/oC for
the winter day), the electricity costs corresponding to thethree
different values ofδ are the same. This is because sufficiently
high values of penalty valuew results in the temperature being
close to the desired value for the whole day. These figures also
show that the electricity cost due to optimal control without
discharging is much higher than that exploiting EV discharging
capability. This result confirms the great benefits of exploiting

interactions among EVs and between EVs and HVAC systems.
To obtain numerical results for the optimal control without
discharging, we simply set maximum discharging power to
zero in our problem formulation.
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Fig. 4. Impacts of parametersw andδ on indoor temperature (No V2G)

Due to the space constraint, we consider only the summer
case to present other numerical results in the following.
Fig. 4(a) illustrates the indoor temperature variation over time
for δ = 2oC and different values ofw. This figure confirms our
observation from Fig. 3(a) where higher values ofw reduce the
fluctuation of indoor temperature around its preferred value. In
Fig. 4(b) we plot the indoor temperature over time for a fixed
w and different values ofδ. This figure again indicates that the
indoor temperature oscillates more around the preferred value
asδ increases.

Fig. 5(a) shows the power imported from the grid under our
control scheme exploiting EV discharging capability compared
to optimal solution without discharging and the uncontrolled
scheme in the summer day. For the uncontrolled scheme, EV
charging occurs at midnight when EV is plugged, regardless
of electricity price. The charging terminates when the EV
meets the energy consumption requirement for the day. For
fair comparison, the energy charged to EV is chosen so that
the remaining energy in the EV battery at the end of the day
equal to the energy in the controlled case. In addition, for
the uncontrolled case, the AC is controlled by a thermostat to
keep the indoor temperature equal to the desired temperature at
every time slots. It can be observed that our optimal scheme
with discharging reduces the significantly load during peak
hours (from 2 P.M to 9 P.M) when the electricity price is very
high (cf. Fig. 2(a)). The negative value of imported power in
the V2G case represents the power selling back to the grid.
To supply energy for the HVAC system, the EV discharges
its remaining battery right after it arrives home as indicated in
Figs. 5(b), 5(b). Moreover, during high-price hours the amount



IEEE TRANSACTIONS ON SMART GRID, TO APPEAR 9

0 2 4 6 8 10 12 14 16 18 20 22 24
−5

−4

−3

−2

−1

0

1

2

3

4

5

6

7

Time (hr)

Im
po

rt
ed

 p
ow

er
 (k

W
)

 

 

Opt. with discharge V2G
Opt., with discharge
Opt., w/o discharge
Uncontrolled

(a) Imported power

0 2 4 6 8 10 12 14 16 18 20 22 24
0

1

2

3

4

5

6

7

Time (hr)

Po
w

er
 (k

W
)

 

 

HVAC
EV Charging
EV Discharging

(b) Power consumption, charging/discharging (No V2G)

0 2 4 6 8 10 12 14 16 18 20 22 24
0

1

2

3

4

5

6

7

Time (hr)

Po
w

er
 (k

W
)

 

 

HVAC
EV Charging
EV Discharging

(c) Power consumption, charging/discharging (V2G)

Fig. 5. Imported power and power consumption (very hot day,w = 0.01
$/oC, δ = 2oC)

of the EV discharging power for the V2G case in Fig. 5(c)
is much higher than the amount of the EV discharging power
without V2G service in Fig. 5(b). EV charging occurs at time
slots when electricity prices are low (from 3 A.M to 4 A.M).

In Figs. 6(a), 6(b), we present the impacts of different
temperature profiles on electricity cost saving compared tothe
uncontrolled scheme in a summer day. It can be observed that
the cost saving decreases with increasingw since larger values
of w reduces the flexibility in controlling HVAC consumption.
Also, the absolute cost saving in dollars is larger for a hot or
very hot day than that for a mild day. This is because more EV
discharging energy to the HVAC system would be expected in
a hot or very hot day, which translates into more significant
cost saving. Fig. 6(b) shows that for a small value ofw (e.g.,
less than 0.04 $/oC), the cost saving of more than 25% can be
achieved in a mild or hot day where the relative cost saving
is calculated as

Saving(%) =
Cost of uncontrolled case - Optimal cost

Cost of uncontrolled case
100.

We illustrate the absolute and relative cost saving com-
pared to the uncontrolled scheme versus users’ arrival and
departure times for different summer temperature profiles in
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Fig. 6. Impact of temperature profiles andw on cost saving (No V2G,δ =

2oC)

Figs. 7(a), 7(b), 7(c), 7(d), respectively. These figures show
that the absolute cost and the relative cost saving decrease
with increasing users’ arrival time (departure time is fixedat
8 A.M) while it increases with increasing users’ departure time
(arrival time is fixed at 5 P.M). These results can be interpreted
as follows. The relative cost saving would increase if EVs are
available at home for a longer duration per day. This is because
by connecting with the power grid longer, EVs can charge their
batteries during off-peak hours and discharge energy to supply
the HVAC system in on-peak hours more efficiently. However,
EV parking time at home is directly related to users’ arrival
and departure times. Also, it is easy to recognize that by using
V2G service, more cost saving would be achieved.

To investigate the impact of travel distance on the cost
saving of the proposed scheme compared to the uncontrolled
one, we fix the departure time (8 A.M.) and the arrival time
(5 P.M.) and vary the travel distance of the EV. The EV
battery SOC when it returns home depends on its energy
consumption which, in turn, depends on the travel distance.
Moreover, the electricity price is high around 5 P.M.; therefore,
the higher SOC when EV gets home, the more energy can
be discharged from the EV to supply power to the HVAC
system, which consequently results in larger cost saving. The
numerical results in Figs. 8(a), 8(b) confirm this point by
showing that the cost saving decrease as the travel distance
increases.

B. Multiple-house Scenario

In the previous section, we have shown the strength of
our proposed control scheme for the single-house scenario
compared to the optimal scheme without discharging and the
uncontrolled one. In this section, we will demonstrate that, it
is even more cost-efficient if we apply our proposed control
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Fig. 7. Impact of departure time and arrival time on cost saving (δ = 2oC,
w = 0.01 $/oC)

scheme to manage a group of households. Toward this end, we
consider a community of 100 households (M = 100). We also
assume that all EVs are Nissan Leaf whose specifications such
as battery capacity, maximum charging/discharging power are
described in the previous section. We take building thermal
parameters from [23] as mean values for thermal parameters of
houses in the community. Each thermal parameter (resistance
and capacitance) of each house is chosen to be uniformly
distributed in the interval of +/- 20% around the mean value to
represent the diversify of houses in the community. In practice,
the size of AC/heater units would be chosen based on the size
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Fig. 8. Impact of travel distance on cost saving (very hot,δ = 2oC, w =
0.01 $/oC)

and shape of the building. To capture the variety of HVAC
systems, we assume that the power rating and COP of HVAC
units in the community are uniformly distributed in [4, 6]
kW and [2.5, 3.5] intervals. We assume that all households
are occupied all day and the desired indoor temperature for
all households is 23oC in the summer. The initial indoor
temperature is set randomly in [22, 24]oC interval and the
maximum imported power from the grid is set equal to 1 MW.
The initial SOC of EVs are chosen to be uniformly distributed
in the range [SOCmin, SOCmax].

The travel patterns of EVs in the community are randomly
generated based on statistical data from National Household
Travel Survey (NHTS) data set, which collects daily travel
information of households in US [30]. For simplicity, only the
departure time of the first trip and the arrival time of the last
trip are taken into account even though our proposed model
can cover multiple trips per day. This assumption can be justi-
fied because if an EV comes back home for a short time during
the day, its available time for charging/discharging between the
trips is small and the benefit due to the energy exchange would
be insignificant. We choose the departure times for different
EVs randomly according to a normal distribution with the
mean of 7 A.M. and the standard deviation of 2 hours. The
arrival time is drawn randomly according to another normal
distribution with the mean of 6 P.M. and the standard deviation
of 2 hours. These parameter settings were suggested by [42],
which were established by using the data set given in [30].
Daily travel distance also follows a log-normal distribution
with the mean of 32 miles and a standard deviation of 24 miles
[41]. Based on EV ownership information [30], we assume
that there are 9 households which have no EV, 32 households
each of which has 1 EV, 36 households each of which has
2 EVs, 12 households with 3 EVs each, and 11 households
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each of which has 4 EVs. Therefore, there are 184 EVs under
consideration. There are about35% of vehicles do not travel all
day according to [14], [17], [30]; therefore, we set 64 EVs out
of the 184 EVs to be available at home all day. For remaining
EVs, their travel patterns (departure time, arrival time, and
travel distance) follow the normal and lognormal distributions
as described above.
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Fig. 9. Comparison optimal electricity cost under community-based optimal
and individual-based optimal solutions (No V2G)

To ease the analysis and presentation, we assume that all
households choose the same value ofwk = w and same the
value of δk = δ in our model. We evaluate the performance
for two cases where the proposed optimization framework is
applied for the whole community with 100 households and for
individual households, respectively. The results corresponding
to these two cases are indicated as “Community” and “Indi-
vidual” in Figs. 9, 10(a), respectively. Fig. 9 shows the optimal
costs for both control schemes in thevery hot summer day.
It can be observed that the total electricity cost is reduced
quite significantly when we optimize the energy usage for the
whole community compared to the case when each household
optimizes its energy consumption separately. The performance
gain is about 20%.

Fig. 10(a) plots the power imported from the grid fora
hot summer day and w = 0.02 $/oC. Fig. 10(b) illustrates
the total power consumption and charging/discharging due to
ACs and EVs in the community. As can be seen, the total
energy imported from the grid in the community-optimization
scheme is zero during peak hours (1P.M to 6P.M). When each
household applies our optimal scheme separately, the total
energy imported from the grid is non-zero for several high-
price hours. This “demand response” effect achieved by the
proposed community-optimization scheme is very desirable
since it helps reduce the peak demand in on-peak hours. In
addition, Fig. 10(b) shows that by exploiting EV discharging
capability we can reduce the demand and save the electricity
cost during high-price hours.

VI. CONCLUSION

We have proposed a unified framework to jointly optimize
the EV and home energy scheduling considering user comfort
preference. The proposed control model captures differentkey
modeling aspects including thermal dynamics, EV travel and
user occupancy patterns, as well as operational constraints
of the HVAC system and EVs. We have presented extensive
numerical results to demonstrate the impacts of different
parameters on the electricity cost, the significant gain achieved
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Fig. 10. Imported power and power consumption, charging/discharging (very
hot day, no V2G,w = 0.02 $/oC, δ = 2oC)

by the proposed model, and benefits of optimization of EV and
home energy scheduling for multiple houses in a residential
community.
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[27] J. Siroḱy, F. Oldewurtel, J. Cigler, and S. Prı́vara, “Experimental analysis
of model predictive control for an energy efficient building heating
system,”Applied Energy, vol. 88, no. 9, pp. 3079–3087, Sept. 2011.

[28] R. Halvgaard, N. K. Poulsen, H. Madsen, and J. B. Jorgensen, “Eco-
nomic model predictive control for building climate control ina smart
grid,” in Proc. IEEE PES Innovative Smart Grid Technologies (ISGT)
2012, pp. 1–6, Jan. 2012.

[29] T. S. Pedersen, P. Andersen, K. M. Nielsen, H. L. Starmose, and P. D.
Pedersen, “Using heat pump energy storage in the power grid,”in Proc.
IEEE International Conference on Control Applications (CCA) 2011,
pp. 1106–1111, Sept. 2011.

[30] U.S. Department of Transportation, 2009 National Household Travel
Survey. URL:http://nhts.ornl.gov/index.shtml

[31] http://www.nissanusa.com/leaf-electric-car/index.

[32] S. Boyd and L. Vandenberghe, “Convex Optimization.” Cambridge,
U.K.: Cambridge Uni. Press, 2004.

[33] E. F. Camacho and C. B. Alba, Model Predictive Control, Springer-
Verlag, London, 2nd ed. 2004.

[34] Weather website:http://www.wunderground.com/history
[35] http://rredc.nrel.gov/solar/olddata/nsrdb/1991 −

2010/hourly/siteonthefly.cgi?id = 722265

[36] http://pjm.com/markets-and-operations.aspx
[37] CVX solver: http://cvxr.com/cvx.
[38] http://www.nissan-global.com/EN/TECHNOLOGY/

OVERVIEW/leaf to home.html
[39] http://www.eia.gov/consumption/residential/reports/2009/square-

footage.cfm
[40] http://www.energystar.gov/?c=roomac.pr properly sized
[41] W. Su and M. Y. Chow, “Performance evaluation of an EDA-based large-

scale plug-in hybrid electric vehicle charging algorithm,”IEEE Trans.
Smart Grid, vol. 3, no. 1, pp. 308–315, Mar. 2012.

[42] C. Jin, J. Tang, and P. Ghosh, ”Optimizing Electric Vehicle Charging
With Energy Storage in the Electricity Market,”IEEE Trans. Smart Grid,
vol. 4, no. 1, pp. 311–320, Mar. 2013.

Duong Tung Nguyen received the B.Eng. from
Hanoi University of Technology, Vietnam, in 2011.
He is currently a graduate student at the Institut Na-
tional de la Recherche Scientifique (INRS), Univer-
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