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Joint Optimization of Electric Vehicle and Home

Energy Scheduling Considering User Comfort

Preference

Duong Tung Nguyen and Long Bao L&mnior Member, IEEE

Abstract—In this paper, we investigate the joint optimization of
electric vehicle (EV) and home energy scheduling. Our objective j,
is to minimize the total electricity cost while considering user

comfort preference. We take both household occupancy and EV

travel patterns into account. The novel contributions of this paer
lie in the exploitation of EVs as dynamic storage facility as 7k,;
well as detailed modeling of user comfort preference, thermal N

dynamics, EV travel and customer occupancy patterns in a pegrid
concrete optimization framework. Extensive numerical results

are presented to illustrate the efficacy of the proposed design.
Specifically, we show that the proposed design can achieve

significant saving in electricity cost, allow more flexibility in
setting the tradeoff between cost and user comfort, and enable
reduce energy demand during peak hours. We also demonstrate phvac
the benefits of applying the proposed framework to a residential
community compared to optimization of individual household
separately.

Index Terms—Electric vehicle, HVAC system, energy manage-

ment system, aggregator, day-ahead electricity price, occupap
pattern, travel pattern, cost minimization, user comfort.
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Coefficient of performance (COP) of heater/AC ing Oclrcn»;x

housek

Charging efficiency of EVjj

Discharging efficiency of EVjy

Travel time of EVj, during trip{

Solar irradiance in time slat (kW/m?)

Dummy variable, “-1” for AC cooling, “1" for
heating

The effective window area of houge
Occupancy state of housein time sloti, “1” for
occupied, “0” otherwise

Availability state of EV ji in time slotd, “1” for
parking at home, “0” otherwise

Thermal capacitance (KWHZ)

Travel distance of EVj, during trip{ (mile)
Electricity price at time slot ($/kWh)

Battery capacity of EVj; (kWh)
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Time slot index;; =1, 2, ..., T

Number of EVs in housé

Household indexk =1, 2, ..., N

Number of households

Travel efficiency of EVj, (kWh/mile)

Number of time slots

Imported power from the grid during time slat
(kw)

Power rating of heater/AC in houge(kW)
Output power of heater/AC in hougeat time slot
i (KW)

Power supplied to heater/AC in houket time slot
i (KW)

Charging power of EVj, at time sloti (kW)
Discharging power of EVj; at time sloti (kW)
Maximum charging power of EVf; (kW)
Maximum discharging power of EY; (KW)

The fraction of solar radiation entering the inner
walls and floor

Thermal resistance between two heat exchange me-
dia C/kW)

State of charge of EVj; at time slot:

Maximum allowable state of charge of E},
Minimum allowable state of charge of E)Y;
Ambient temperature in time slat(°C)

Desired indoor temperature of houkén time slot
i (°C)

The temperature of the house envelop€)(
Indoor temperature of hougein time slot: (°C)
The temperature of the thermal accumulating layer
in the inner walls and floor°C)

Time slot index when EVj leaves home for trig

Time slot index when EVj;, returns home for trip

Weighting coefficient between electricity cost and
discomfort cost for housg ($/°C)

I. INTRODUCTION

Demand side management in the residential sector (i.e.,
residential buildings) is an important research topic &inc
buildings contribute a significant fraction of overall dligity
consumption. In fact, it accounted for 72% of total U.S.
energy consumption in 2006 out of that residential building
accounted for 51% according to the U.S. Environmental Pro-
tection Agency (EPA) [1]. This research topic has received
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lots of attention from the research community [2]-[8]. 19, [2 total electricity cost and maintaining user comfort pref-
Shengnaret al. assessed the use of demand response as a load erence. The model accounts for the characteristics of the
shaping tool to improve the distribution transformer atlion HVAC system, thermal dynamics, user climate comfort

and avoid overloading for the transformer. Mohsenian-Rad preference, battery state model, user travel patterns, and
et al. [3] proposed an optimization framework that aims to  household occupancy patterns. We also discuss potential
minimize electricity bills considering user comfort. Hovee, extensions of the proposed framework to capture various
the assumption on homogeneous appliances and using waiting modeling uncertainty factors.

time to represent user comfort in this paper would be too. We show the impacts of different design and system

simple to represent different characteristics of homeiappés parameters, which control the electricity cost and user
and user requirements. comfort, on the system operation and performance as well

In a typical household, thermostatically controlled appli as the economic benefits of applying our proposed control
ances (TCAs) including refrigerator, electric water hgated framework compared to a non-optimized control scheme
the heating, ventilation, and air-conditioning (HVAC) 1% for a single-house scenario.

account for more than half of total residential energy con-« We illustrate the advantages of applying the proposed
sumption [1]. Research on optimal control for TCA loads has control model for the multiple-house scenario compared
been a hot research topic in the last several years. Retsenc to the case where each household optimizes its energy
[4] and [5] proposed optimal control schemes to minimize  consumption separately. Specifically, we demonstrate that
the electricity cost for the HVAC system considering user optimization of EV and home energy scheduling for
climate comfort. Dynamic programming was employed in  multiple houses in a residential community can achieve
[6] to compare several optimal control algorithms applied the significant saving in electricity cost and reduce the
to a thermostat. In [7], the authors introduced an appliance high power demand during peak hours.

commitment algorithm that schedules electric water heaterthe remaining of this paper is organized as follows. The

power consumption to minimize user payment. system model is presented in Section Il. Thermal dynamics
Electric Vehicle (EV) is another important grid elemeninodel is described in Section Ill. Detailed problem formula

that has significant economic and environmental advantaggs is described in Section IV. The case studies and nuwieric

compared to normal cars. The penetration of EVs is expecie@uilts are provided in Section V followed by conclusion in
to increase drastically in the next few years, which canlreagection VI.

one million by 2015 in US [9]. Therefore, EV charging will
have significant impacts on the power distribution netwdik i Il. SYSTEM MODEL
is not controlled appropriately [10]-[12]. EV travel patids

an important factor to model potential impacts of EVs on tt}ﬁ
grid [13], [14] and to develop efficient EV charging strategi

We consider the interaction among EVs and HVAC systems
the residential community. We assume that there is an
aggregator that collects all required information from Evsl
%\F/AC systems from all households to make control decisions.
e . the higher level, several aggregators can be connectad to
to optimize the charging for one EV [16]. In [17], Wl al. central aggregator that coordinates the overall operstom

considered load scheduling and dispatch problem for a fl% trticipates in the wholesale day-ahead electricity ntafkee

of EVS in both the day-ahead market and real-time ene %y-ahead market clearing price is assumed to be available t

market. In [18], an optimal charging strategy for I.EVS wa ny aggregators before the operating day. The system model
proposed that considers voltage and power constraints. éj\?der consideration is illustrated in Fig. 1

The problems of scheduling of home energy usage and We consider a time slotted model where there Ardéime

charging are often addressed separately in the literdtuthis lots in the optimization period (e.g., 24 hours for one-day

paper, we propose a unified optimization model that jointlS o . . Iy
optimizes the scheduling of EVs and TCAs. In particulagptlmlzatlon period) and energy scheduling decisions axdem

we utilize EV dvnamic stor facility v ener for each time slot. Based on the pricing information and

€ utiize Vs as dynamic storage 1acility to supply ene gglectricity demand, each aggregator decides how much gnerg
for residential buildings during peak hours where ENETYY should import from the grid at each time slot and how to
can .be transferred from FTVS to gharg_e other EV.S‘ and gﬂocate and schedule the energy usage and to exchangg energ
provide energy for HVAC in a residential community. Our mong its components including HVAC and EVs. We assume

proppseq model aims to minimize the total electricity co Iat EVs can only be charged or discharged when they are
considering user comfort, house occupancy and EV trave

: . k th h h hold i i ith th
patterns, thermal dynamics, EV electricity demand, an@mtiﬁﬁ;rgigafacﬁgg (ie., each household is equipped wi ©
02gr?ttilglnbfaonne?tr:IQIES\}eLTSreetzrsusi%ﬁe ri?]?grn;(;\{[\{g;kss[tllgj]o?]ﬁs The slow thermal dynamic characteristics of buildings pro-
b 9 o " vides a great opportunity for demand side management since
However, to the best of our knowledge, none of previous wor

have considered detailed design and joint optimization\ef E, building mass can be considered as a thermal storage
I 9 J P o afcility. In particular, we can schedule the power consuompt
and building energy management. The main contributions 0
this paper can be summarized as follows: 1The thermal dynamics and energy scheduling model that we @anisid
« We propose a Comprehensive model to optimize the Es paper is in discrete-time, which is commonly assumed in iteeature.
. . . . Under this model, we assume that the thermal dynamics can reasteédy
and HVAC scheduling in a residential area. The formul

! : ) ] T &tate in each time slot quickly so that the correspondingstean time can be
tion aims to achieve flexible tradeoff between minimizingeglected.
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e i ‘ cooking, refrigerator, etc.), and the HVAC input power. Een
‘ we have

Thiv1 = f(Tk,Z-,P,L"Vf”“t, other inputs and parameters (1)

For simplicity, we make the following assumptions.

« Each house is modeled as a large room exchanging
thermal energy with the ambient environment. The in-
door temperature is uniformly distributed within a house,
which can be considered as the equivalent indoor tem-
perature.

« If the household has more than one AC/heater (e.g., one
AC/heater for each room) then the thermal output power
from these ACs/heaters are gathered and considered as
one aggregate AC/heater with the output power equal
to the total output power of individual ACs/heaters [22],

Fig. 1. System model [23]. In practice, a central HVAC system can provide all

cooling/heating loads of buildings [28], [29].

« Theimpact of disturbances such as humidity, internal heat
of HVAC systems flexibly while respecting users climate  gains, wind speed on the building thermal dynamics is
comfort because the indoor temperature changes quiteyslowl assumed to be negligible compared to the influence of
By cooperating the energy scheduling of HVAC systems and the ambient temperature, the solar radiation power, and
EVs, itis expected that larger cost saving can be achieved co HVAC power input.
pared to the case where we schedule these loads separateNote that these assumptions are commonly made in the
Specifically, during high price hours, the energy discheggi literature [23]-[25], [28]. The thermal energy from solar
from an EV could be used to supply for other EVs and HVAGradiance through windows can be calculated as [23]
systems or can be sold back to the main grid. In the case we < .
do not allow to sell EV discharging power back to the grid, the Qki = 234k @)
discharging power from EVs is assumed to only flow withitvhere®s is the solar irradiance andy, is the effective window
the community network. In this paper, the term V2G (Vehiclesrea of housé:.

to-grid) refers to the case where selling back electrigityhie Assume that all energy flux by solar radiation through

Electric Vehicles

main grid is allowed. windows is absorbed by the heat accumulating layer in the
inner walls and the indoor air. We defipg as the fraction of
I1l. BUILDING THERMAL DYNAMIC MODEL solar radiation entering the inner walls and floor of hoiése
then the rest of the solar energy is absorbed by the indoor air

To formulate the HVAC and EV scheduling problem, w

5 e., we have
need to model the dynamics of indoor air temperature and the’
characteristics of HVAC load in each household. In fact, mod Qi"fz’a” =i Q%
eling thermal dynamic of buildings is an important research s,air __ (1-p3)Q5 3)
kg T 3

topic that has been extensively studied in the literatureoAg
existing modeling methods for building thermal dynamit®, t where Q;’} vall and Q5 2" denote these two energy fractions,
grey-box approach appears to be one of the most popuda5pect|vely In general heat transfer occurs when theee i
ones. In this approach, we combine the physical knowledgemperature difference between two spaces. Thermal energy
about the building and experimental data to obtain a reddenais transferred from a higher temperature space toward arlowe
model for the building thermal dynamics [21]-[27]. Basetemperature space due to conduction, convection, andi@uia
on the energy balance and mass balance equations for [@@. Based on heat transfer mechanisms, we construct the
indoor air, a continuous time linear state space model, lwhienergy balance equations, which consequently result iiré th

is a set of first-order differential equations, can be cer$éd order linear model for thermal dynamics of housas follows
[26]-[28]. It is also called equivalent thermal parameteda  [23]:

(ETP) [7]. Then, experimental data is used to estimate imgjld dT™ 1
thermal parameters of the constructed model [23]-[27] . Cy ch I 2 Tk = T37) + Awp P,
In the following, we present a thermal dynamic model for dT? 1 1
a residential housing. For househdid the indoor tempera- Cr o E(Tk —-T7) + el (T7 = T%)
ture can be expressed as a function of the housing thermal k k (4)
characteristics (thermal resistance, thermal capacitawin- kdﬂ = L(Ta —Te) + 1 — (T = Ty)
dow area), the weather condition (ambient temperaturey sol dt R Ry
radiation, wind speed, humidity), internal gains (occupan n RL(TE- ST+ A1 — ) +Ukphvac out
2In general, V2G can refer to the case where EVs are allowedstharge ¥ . .
energy regardless of whether the premises become a net suppliee main whereo;, = 1 Corresponds to the winter time ang, = —1

grid. for the summer time. Other parameters are defined as



IEEE TRANSACTIONS ON SMART GRID, TO APPEAR 4

« R} is the resistance between room air and the ambidauler discretization (i.e., zero-order hold) with a samglime
(°C/kW). of Ty [23], [27] as
« R} isthe thermal resistance between room air and the the Tiiv1 = AgToi + BaUia

thermal accumulating layer in the inner walls and floor . @)
(°CIKW). Ty = Calk,
o Rj is the thermal resistance between room air and thghere
the house envelop€C/kW) 272
» R is the thermal resistance between the house envelope Aq = exp(ATs) = 1+ AT, + 5 =4
and the the ambien? C/kW). T.
« () is total thermal capacitance of the indoor air By = / exp(Ar)dTB; Cy=C
(kWh/°C). 0
« C" is the total thermal capacitance of the inner wall$his discrete time thermal dynamic model will be used in the
(kWh/°C). following energy scheduling problem formulation.
» C} is the total thermal capacitance of the house envelope
(KWh/°C). IV. PROBLEM FORMULATION
The equivalent thermal parameteRs, R}, Ry, Ry, Ck, We present the joint EV charging and home energy man-

Cr, Cr, andp;, are assumed to be constant, which can ement problem for cost minimization in this section. t-irs
estimated by using the Maximum Likelihood (ML) methodhe total electricity power imported from the grid at timetsl
based on measured data [23]-[25], [27]. Therefore, therthker ; can be written as

dynamics ofk-th house can be rewritten in the deterministic M M Jx
linear state space model in continuous time as pEid — ZPI?,ViaC + Z Z {P;VJCZ _ P]jszfj , (8)
k=1 k=1j=1
4T — AT, + BU, ’

which is equal to EV charging power plus power usage of
the HVAC system minus the EV discharging power summed
where T, = [Ti" T T¢] is the state vector andOVer all households. The aggregator aims to minimize the
Uy =[T? ®° o,kP;vaC,out]/ is the input vector to the system.t°t§| electricity cost and user d|s_comfort durmg a schm@yl
The output of interest ig7 = Tin because we are interested‘o”zon- We assume that there is no electricity losses in the
in the indoor temperature, which directly impacts user atien ransmission lines among EVs and HVAC systems. This as-
comfort. Matrix A represents the dynamic behavior of th€UMPtion is reasonable since the transmission lines faggne
system, and matribB captures the impact of input element§Xchange in a community are relatively short. Moreover, EV
(ambient temperature, solar radiation, and HVAC power) Sgharging is assumed.to .be contlnuously controllablg in our
the system behavior. The matrices in the state space madel{@1trol model. The objective and constraints of the undiegly

T} = CTy, ®)

are given as follows: optimization problem are described in the following.
i Gz i3 A. Objective Function
A= an axn 0 ®) The objective function consists of two parts. The first part
az1 0 ags is the total electricity cost which can be expressed as
where the underlying coefficients are defined as N M .
Joee = »_ Y PEUe;AT. 9)
-1 ( 1 4 1 4 1 ) 1=1 k=1
A==\ 53 T om T De
Ce \I, R R Substitute the result of (8) into (9), we have
1 1
a2 = 3013 = e A N M M Jg
RMCy, R3Cy, hv c .d
v e T = Z} > phse ; Z; [P = pesi] | et
a21 = S Am s a422 = — SnAn = o= =17=
RPCY RPCY (10)
o Lo 111 The second part of the objective function is the discomfort
o RsCY’ 33 Ci \ R Rj cost. It is assumed that each househéldvill inform its
preferred temperaturdy, for each time sloti when the
ﬁ w CL house is occupied and a maximum acceptable deviation
B— ’“Ok Ak;; Ok to the aggregator. Then, the aggregator controls the power
N . cy supplied to HVAC system so that the temperature lies within
RecT 0 0 the acceptable rangd}; — 65, T, + 0] in each occupied
house k. The closer to the desired temperature, the more
c=[10 0]. comfortable users would be. There is no indoor temperature

constraint for the period when the house is unoccupied. The
The state space model in continuous time (5) can Ipewer supplied to an HVAC system at time slotill decide
transformed into the equivalent discrete time model by gisithe temperature at time sléot+ 1, which consequently affects
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user comfort at time slot+ 1 but time sloti. Therefore, we  3) HVAC Power Constraints: The power supplied to an
define the discomfort cost function as HVAC system cannot be negative and it cannot take values

N u greater than the heater/AC’s power rating. Therefore, we ha

i d
Jdiscomfort = Z Z wkak,i+1|T1'£i+1 - Tk,i+1|7 (11) 0< P}?’Viac < szac’max7 (14)
i=1 k=1

fork=1,2,...,.M andi=1,...,N.
where a; ;41 represents the occupancy status of house

at time sloti + 1. If a;,41 = 0, the discomfort cost for Remark 1: In our proposed system model, each household
housek at time sloti + 1 is equal to zero regardless ofneeds to report its desired temperature at each time dot
the indoor temperature at that time slot because the howlsing which the household is occupied as well as the level of
is not occupied. The weighting factars, can be viewed as discomfort (i.e., parameters d;) to the aggregator to determine
the price ($) that aggregator has to pay houseliolthen the optimal control solution. In practice, if a particular user
the temperature in housk deviates C from the desired doesnot wish to report its desired temperature in the occupied
temperature in each time slot. The valuewgf will influence time slots to the aggregator then the aggregator can simply
the optimal solution of the underlying optimization prable choose a typical temperature value for this household to
The objective function, which is the sum of electricity costalculate the optimal solution.

and the discomfort cost, can be written as follows:

N [ M M Ji C. SOC and Charging Power Constraints
Jror = Z P/?:;?ac - Z Z [P:\IJCI N P:Vycf e AT For EVs, we need to model the characteristics and the travel
i=1 \k=1 k=1j=1 patterns for each EV. In particular, we are interested in the
N M . battery capacity KWW), the travel efficiency KW h/km), and
+3 ) wiaria T — Tl the charging type. These properties can be retrieved fram th
=1 k=1 (12) manufacturer’'s website. The travel pattern of each EV can be

described by the number of trips per day, the starting and
rending times, and the travel distance of each trip. A trip is
defined as the time period between the instants when the
EV leaves and arrives home. This information is related to
user traveling schedule, which can be sent by users to the
aggregator before the operating day. In Section V, we use
the real-world travel pattern data from the 2009 National

1) Thermal Dynamics Model: The thermal dynamics mode|HousehoId Trav_el Survey [30] to build travel patterns used
for a residential house has been presented in Section I11.1qtobtain numerical results.
can be seen from equation (7), for each household, the indood) SOC Dynamics: Assume that each EV of housek
temperature at the next time slot is determined by the ctrr&@n take s?veral trigs during the optimization period (ege
indoor temperature7(".), the current outdoor temperatg%), day). Lett{",, andt{), be the time slots when EY of house
the solar radiation pdwem)i), and the output power of the k leaves and arrives home for trip respectively. Then, we

HVAC system @2°'%) at the current time slot. The outputh@ve following constraints
power is related to the power supplied to the HVAC system as

We are now ready to describe all constraints for the consitle
optimization problem.

B. Thermal Constraints

P]?:,iac,out _ nkPIQ’VfC wheren,, is the performance coefficient ne PECAT PYAAT
of the HVAC system in householkd The discrete time thermal SOC; j ;11 = SOCy, j; + —2L el Mo
dynamic model (7) represents one constraint of the coriamler By ki Bk
optimization problemTy; = T};). if i ¢ [tf@,l;_l,t,f;_l), Vk,i,7,0 (15)

2) Temperature Constraints: Each household informs its T dy i1 % mg
desired temperature to the aggregator. Then, the aggregato SOCk jitAi ;0 = SOCh i — ]EW7
controls power supplied to the HVAC system in the house R ’” .
at each time slot to keep the indoor temperature as close as ifi=ty;, Vkij,l (16)
possible to the desired temperature. The indoor temperatur
requirement for each house is expressed as SOC, . .o <SOC;; <S0OC

kgt = Jot = kgt
an,i| T — T3 4| < O, (13) it i€ [ty), 62 )], Vki gl 17)

for k = 1,2,...,M andi = 2,...,N + 1. There is no Here, the SOC for EVj of housek changes according to
temperature requirement when a house is not occupied. Ntite charging and discharging powers when it parks at home
that the power provided to an HVAC system in the currerfl5) and the difference of SOCs at leaving and returning home
time slot will affect the indoor temperature in the next timénstants accounts for the energy usage in driving (16). gua
slot, so the temperature constraint is only applied from tl{¢7) ensures that the SOC level is non-increasing when an EV
second time slot. travels.
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2) SOC Condtraints: To maintain long lifetime of battery,
an EV should maintain its battery level within a certain ng
that is recommended by its manufacturer [31]. Therefore, we ¢ [ en M i
PRI

min

Pev,c - Pev,d] &AT

impose the following constraints kg, k.j.i
i=1 \ k=1 k=1j=1
SOCMN < SOC,, ;< SOCM* V] (18) Al . J
= 3], = N ?
k,j J k,j =+ Z Z wkak7i+1|T,'€':i+1 — Tk,i+1|

, i=1 k=1
where SOC'T and SOCT™>* denote the minimum and maxi-  gypject to '

mum recommended SOCs for ENMof housek.

3) Charging and Discharging Constraints: We assume that
an EV is only charged or discharged when it is parked at
home. Moreover, EVs are connected to home chargers as soon constraintg22), if V2G (23)
as they arrive home. Therefore, constraints on charging and L _ e ovd
discharging power applied to only time slots when an EV ¥here the optimization variables af";, P, and P

constraintg7), (13) — (19)
constraintg21), if no V2G

parked at home as Despite the absolute term in the objective function of our
model, this optimization problem can be transformed into
0< PEYC < by 1P om™ an _equivalent linear program by introducing some auxiliary
ev’Jd’ ev’Jd max (19) variables [32]. Thus, the aggregator can easily calculatk a
0<Prji < brgilyj ‘ implement its optimal solution upon collecting all requaire
o ‘ information.
whereby, ;. represents the availability of EY of housek at |t can be observed that we do not impose constraints in

A . . Vv, C,max v, d,max .. .
home during time slot, P and P"%™ denote the the optimization problem (23) to prevent any EVof house
maximum cha}rglng and dlsgharglng !'m't3= rgspectlvelmrﬁr k from charging and discharging simultaneously at any time
these constraints, the charging and dlsc(?arglng poweesaftt  g|qt ; (i.e., P2:% and p]:vzf% for any EV j of housek are both
. . ev,c ev, : oL ! 505 275 S
EV j of householdk (i.e., P ;' and P, ) are equal zero if positive at the same time slg). In fact, this is not needed
the EV is not at home (i.e., dg ;; = 0). since the optimal solution of (23) always satisfies thesdénid

constraints.

D. Grid Constraints
E. Extensions to Consider Modeling Uncertainties and Other

If it is not allowed to sell EV discharging energy back tdResidential Loads

the main grid, the energy imported from the grid in each time . .
slot must be non-negative and it must be upper-bounded b n the above formulation, we have assumed that all modeling

some predetermined limit. Hence, we have parameters such as outdoor temperature, hoysehold o@yupan

pattern, and EV travel pattern are known without errors and

the thermal dynamics model is perfect. In practice, theyehav

to be estimated with potential errors. We can employ the

Model Predictive Control (MPC) technique to tackle these

or estimation uncertainties [33], which can be implemented as
Mg follows. The MPC controller solves the minimization prafble

M .. . .
0< Zpgyiac + Z Z[P]:v,c _ Pev,d] < pmex, 1) (23) for the prediction horizo@V, from current time slot to
k=1

0 < P& < pmax, (20)

it TR time slott + N, with assumption that estimated parameters
are certain ones (i.e., no estimation errors). The unceiesi
where PM is the maximum power that can be importe@'e compensated by refinement and update of Fhe prediction
from the grid, which can be a contracted amount between #keach time step. The sequences of control variables such as
aggregator and the grid, or a particular parameter cagfuriR®Wer cons_,ur_nptlon _of HVAC and EVs are calculated_ for the
grid conditions over time. In contrast, if the selling EWWhoIe prediction horizon; however, the controller appliedy
discharging energy service is allowed and the maximum povJE're control action for the first time slot. The MPC controller

that can be sold back to the main grid is equaPfe™*. Then repeats the process at next time step, solving new optiibizat
we have the following constraint with the most updated data for the new time horizon shifted

one step forward.

k=1 j=1

M M Jy We have only considered EVs and HVAC systems in our
—Ppmx < ZP,?V;”C + Z Z[Pzivjci - P,j"ﬂ] < pm._ (22) proposed optimization framework so far. However, integrat
k=1 =1 v of other types of residential loads into this framework is

possible. Moreover, extension of our system model to censid
For simplicity, we assume that the selling back electripitige distributed renewable energy sources is also possiblee,Her
is equal to the buying electricity price. In summary, we cathe MPC technique can be employed again to tackle the
formulate the EV charging and HVAC scheduling to minimizeincertainty due to the intermittent nature of the undedyin
the cost function/i,; given in (12) as renewable sources (e.g., wind or solar energy).
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V. NUMERICAL RESULTS

—6— Summer

We present numerical results to illustrate the desirable T | e winter
performance of the proposed framework. We assume that the I
outdoor temperature and solar irradiance can be predicted
perfectly. The temperature data is taken frakeather Un-
derground website [34], and the solar irradiance data is taken
from the Renewable Resource Data Center (RReDC) website
[35]. Solar radiation power contributes to increase thevand S S S S SN SNV SO S O
house temperature; therefore, it results in more coolirggn R A
needed in the summer and less heating energy needed in the (a) Day-ahead electricity price
winter. Moreover, the solar irradiance is low during the tem
months and high during summer months as we can observe in e Tvery o0
Fig. 2(d). Hence, the decreasing amount of heating energy T e ey
required in the winter is relatively small compared to the
increasing amount of cooling energy needed in the summer.

For the electricity price data, we use day-ahead pricing
data retrieved from PJM [36]. We will first evaluate the
performance of our control scheme for a single-house sienar

Electricity price ($/MWh)

Temperature (C)

Then, we investigate the benefits of applying the control O S S DS SN U SN S S O N

. . . . 0 2 4 6 8 10 12 14 16 18 20 22 24
strategy in the multiple-house setting. Results for thelsin Time (hr)
house scenario are presented to reveal insights into the int (b) Summer temperature profiles
action among the HVAC system, EV, pricing, and temperature 0
patterns. 0, | ~o=Temp. 4 (vild)

When solving the joint scheduling optimization for EVs o [ Temp 6 veyeou |
and HVAC systems we set, = —1 ando, = 1 for all k& % wW,
corresponding to the summer and winter time, respectively. g e ssenr T T |
The optimization period is one day with 24 time slots each of E:_m’ |
which is one hour § = 24, AT = 1). Fig. 2(a) shows the e T
day-ahead electricity prices of a typical summer and winter = |
weekdays, which are used to obtain numerical results. Three %24 6 s 10 12 14 16 18 20 22 24

Time (hr)

different temperature profiles for summer dayery hot, hot,
mild) and winter days\ery cold, cold, mild) are considered
to represent the diversity of weather conditions, as shawn i 1000
Fig. 2(b) and Fig. 2(c), respectively. The average hourlgrso
irradiance profiles for the summer and winter cases used in
the simulation are shown in Fig. 2(d). We use CVX [37] to
solve the proposed optimization problem.

(c) Winter temperature profiles

—%— Winter
—6— Summer

Solar irradiance (W/mz)

A. Single-house Scenario 100}

n L L L L AP
o) 2 4 6 8 10 12 14 16 18 20 22 24

We analyze the performance due to our proposed optimal Time (hr)
scheme to the single-house scenario. For simplicity, werass (d) Solar irradiance
that the considering residential house has only one EV aad on
HVAC where the varying ownership aspect will be capture'ag' 2
later in Section V.B for the multiple-house case. The haysin
thermal parameters including},, R}, R, R;, Cy, C}', and
C¢ are taken from [23]. We assume that the house is equipp@gults for the single-house scenario, we simply/get 1 in
with a heat pump which can be operated in both heating afli related constraints and quantities.
cooling modes. The parameters of the heat pump are set ag/e assume that the EV's owner leaves home at 8 A.M and
follows: power ratingf’,?“’c’max = 4 kW and HVAC coefficient comes back at 5 P.M. Driving distance is assumed to be 32
of performance (COP); = 3. We consider Nissan Leaf EVsmiles, which is the average daily travel distance in US [17],
whose specifications are obtained from [31] with the follogvi [30], [41]. This is a typical driving pattern [16] in US, whids
parameter setting: battery capacity of 24 kWh; maximumnsed to obtain the numerical results in several scenariogvbe
charging and discharging poweP{" ™ andP,j“d’max) are However, other different driving patterns are also exawhine
set equally to 6 kW [38]; charging and discharging efficiencywhere we will investigate the impacts of varying departure
factors . andn,) are both set equal to 0.9; travel efficiencyime, arrival time, and travel distance on the optimal dotut
is 0.316 kWh/mile; andSOC3* = 0.9, SOC’gjij“ = 0.2. The In addition to the above parameter settings for HVAC system
initial SOC of the EV is set equal to 0.5. To obtain numericalnd EV, the power limitP** is set equal to 25 kW. The

Electricity price and weather profiles
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interactions among EVs and between EVs and HVAC systems.
To obtain numerical results for the optimal control without
discharging, we simply set maximum discharging power to
zero in our problem formulation.

N
o

—A—w =0

—#—w =0.01 h
—e—w=0.04
—*—w=0.1 . i

2 4 6 8 10 12 14 16 18 20 22 24
Time (hr)

N
33}
T

—©— With discharge, =1
—%— With discharge, =2
—#— With discharge, =3
—A—w/o discharge, =1

N
I
T

0 002 004 006 008 01 012 014 0.16
w ($/°C)

Indoor temperature (°C)

-
=N
N N N
[ N
T T
[
[
q
[
@
q
q
q

(a) Summer (very hot)
20
0

(a) Impact ofw on indoor temperature (= 2°C)

N
I
T

—6— With discharge, =1
—»— With discharge, 5 = 2
—#— With discharge, 6 =3
—&—w/o discharge, § =1

Electricity cost ($)

N
8

N
N
T

Indoor temperature (°C)
N
N

N
=]
T

2 i i ; ; i i i i i
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 008 009 0.1 : : : : : : : ; ; ; ;
w ($/°C) 0 2 4 6 8 10 12 14 16 18 20 22 24

Time (hr)
(b) Winter (cold)

e
©

(b) Impact ofé on indoor temperaturew( = 0.02 $/°C)

Fig. 3. Impacts of parameters and on electricity cost (No V2G ) Fig. 4. Impacts of parameteis and§ on indoor temperature (No V2G)

Due to the space constraint, we consider only the summer
desired indoor temperature in summer days and winter daygse to present other numerical results in the following.
are 23C and 22C, respectively. Initial temperature at 0 A.MFig. 4(a) illustrates the indoor temperature variationrdirae
is assumed to be equal to the desired indoor temperatifi®.5 = 2°C and different values af. This figure confirms our
Assuming that the considered house is occupied all day, §8servation from Fig. 3(a) where higher values.afeduce the
the desired indoor temperature is equal t6@3summer) or flyctuation of indoor temperature around its preferred ealn
21°C (winter) at every time slot. Fig. 4(b) we plot the indoor temperature over time for a fixed

Fig. 3(a) and Fig. 3(b) show the impacts of parametersw and different values of. This figure again indicates that the
and w on the total electricity cost in a summer day and edoor temperature oscillates more around the preferregeva
winter day, respectively. The weighting factar is varied in asd increases.

a certain interval, and takes one of three values®Q, 2°C, Fig. 5(a) shows the power imported from the grid under our
and 3C. To enforce the stricter user comfort requirementontrol scheme exploiting EV discharging capability conagk
we would choose a higher value far and a smaller value to optimal solution without discharging and the uncongdll

for 0. These figures show that the electricity cost increasesheme in the summer day. For the uncontrolled scheme, EV
asw increases. This is intuitive since the cost of electricitgharging occurs at midnight when EV is plugged, regardless
increases with stricter user comfort requirement. Moreovef electricity price. The charging terminates when the EV
for small values ofw (i.e., w < 0.04 $/°C for the summer meets the energy consumption requirement for the day. For
day, andw < 0.025 $/°C for the winter day), the electricity fair comparison, the energy charged to EV is chosen so that
cost decreases asincreases. This is because small values tiie remaining energy in the EV battery at the end of the day
w allow the indoor temperature to deviate more significantigqual to the energy in the controlled case. In addition, for
from the preferred value to save electricity cost, esplgcfat  the uncontrolled case, the AC is controlled by a thermostat t
large values ofy. However, asw becomes sufficiently large keep the indoor temperature equal to the desired temperatur
(i.e.,w > 0.1 $/°C for the summer day, and > 0.07 $/°C for every time slots. It can be observed that our optimal scheme
the winter day), the electricity costs corresponding tottiree with discharging reduces the significantly load during peak
different values ob are the same. This is because sufficientlgours (from 2 P.M to 9 P.M) when the electricity price is very
high values of penalty value results in the temperature beinghigh (cf. Fig. 2(a)). The negative value of imported power in
close to the desired value for the whole day. These figures atke V2G case represents the power selling back to the grid.
show that the electricity cost due to optimal control withouTo supply energy for the HVAC system, the EV discharges
discharging is much higher than that exploiting EV discivagg its remaining battery right after it arrives home as indéchin
capability. This result confirms the great benefits of expigi  Figs. 5(b), 5(b). Moreover, during high-price hours the anto
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7 1.6
6k
19 —e— Very hot
5; 1.4F —»— Hot
g’ 13F —— Mild
< 3l _12f S—o—-o0-6=¢
3 2 &
= 11k
2 1 g
2 R
S 0.9r
g -1F —&— Opt. with discharge V2G
= —2H —©— Opt., with discharge 0.8
_3 —— Opt., w/o discharge 0.7 B
— e—6
_ad Uncontrolled 0.6 ]
_5 1 1 i . ; ; ; ; ; ; ; 05 1 i . . . . . . .
0 2 4 6 8 10 12 14 16 18 20 22 24 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Time (hr) w ($/°C)
(a) Imported power (a) Absolute cost saving
7 60
sk ——HVAC i 55¢ —6—Very hot
—%—EV Charging 50% Hot
st —s— EV Discharging ] O—6—o—og —— Mild

Power (kW)

e ° 10 L L L L L L L L L
0 2 4 6 8 10 12 14 16 18 20 22 24 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Time (hr) w($/°C)
(b) Power consumption, charging/discharging (No V2G) (b) Relative cost saving
L S s e e N A Fig. 6. Impact of temperature profiles andon cost saving (No V2G§ =
o —e—HVAC | 2°C)

—»—EV Charging
—#— EV Discharging

Figs. 7(a), 7(b), 7(c), 7(d), respectively. These figureswsh
that the absolute cost and the relative cost saving decrease
with increasing users’ arrival time (departure time is fixad
8 A.M) while it increases with increasing users’ departimeet
(arrival time is fixed at 5 P.M). These results can be intégare
O R as follows. The relative cost saving would increase if EVes ar
(c) Power consumption, charging/discharging (V2G) available at home for a longer duration per day. This is begau
by connecting with the power grid longer, EVs can chargerthei
batteries during off-peak hours and discharge energy tplgup
the HVAC system in on-peak hours more efficiently. However,
EV parking time at home is directly related to users’ arrival
of the EV discharging power for the V2G case in Fig. 5(cand departure times. Also, it is easy to recognize that bygusi
is much higher than the amount of the EV discharging pow®i2G service, more cost saving would be achieved.
without V2G service in Fig. 5(b). EV charging occurs at time To investigate the impact of travel distance on the cost
slots when electricity prices are low (from 3 A.M to 4 A.M).saving of the proposed scheme compared to the uncontrolled
In Figs. 6(a), 6(b), we present the impacts of differerine, we fix the departure time (8 A.M.) and the arrival time
temperature profiles on electricity cost saving comparati¢o (5 P.M.) and vary the travel distance of the EV. The EV
uncontrolled scheme in a summer day. It can be observed thattery SOC when it returns home depends on its energy
the cost saving decreases with increasingince larger values consumption which, in turn, depends on the travel distance.
of w reduces the flexibility in controlling HVAC consumption.Moreover, the electricity price is high around 5 P.M.; tHere,
Also, the absolute cost saving in dollars is larger for a hot the higher SOC when EV gets home, the more energy can
very hot day than that for a mild day. This is because more B)¢ discharged from the EV to supply power to the HVAC
discharging energy to the HVAC system would be expected $iystem, which consequently results in larger cost savihg. T
a hot or very hot day, which translates into more significamumerical results in Figs. 8(a), 8(b) confirm this point by
cost saving. Fig. 6(b) shows that for a small valuewofe.g., showing that the cost saving decrease as the travel distance
less than 0.04 $C), the cost saving of more than%5can be increases.
achieved in a mild or hot day where the relative cost saving

Power (kW)

Fig. 5. Imported power and power consumption (very hot days 0.01
$/°C, § =2°C)

is calculated as B. Multiple-house Scenario
Saving%) = Cost of uncontrolled case - Optimal cost In the previous section, we have shown the strength of
Cost of uncontrolled case our proposed control scheme for the single-house scenario

We illustrate the absolute and relative cost saving cormempared to the optimal scheme without discharging and the
pared to the uncontrolled scheme versus users’ arrival amgcontrolled one. In this section, we will demonstrate thtat
departure times for different summer temperature profites is even more cost-efficient if we apply our proposed control
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and shape of the building. To capture the variety of HVAC

C
-
o

le

:/:tl === systems, we assume that the power rating and COP of HVAC
“1«/——f ey units in the community are uniformly distributed in [4, 6]
o : ‘ ] kW and [2.5, 3.5] intervals. We assume that all households
e T 15 e are occupied all day and the desired indoor temperature for
Peparture time (hr) all households is 2L in the summer. The initial indoor
(c) Varying departure time (absolute) temperature is set randomly in [22, 2€] interval and the
o e maximum imported power from the grid is set equal to 1 MW.

saf ‘ ———— The initial SOC of EVs are chosen to be uniformly distributed
s6f a in the range $OC™", SOC™].
¥ : e The travel patterns of EVs in the community are randomly

generated based on statistical data from National Houdehol

A vVeyhot-vaa| | Travel Survey (NHTS) data set, which collects daily travel
eyt ] information of households in US [30]. For simplicity, onlyet
—*—Mid ] departure time of the first trip and the arrival time of thet las
A e I 1 13 1 15 16 trip are taken into account even though our proposed model
peparture time (h0) can cover multiple trips per day. This assumption can bé-just
(d) Varying departure time (relative) fied because if an EV comes back home for a short time during
Fig. 7. Impact of departure time and arrival time on cost savihg-(2°C, the day, its available time for charging/discharging bemthe
w = 0.01 $¢C) trips is small and the benefit due to the energy exchange would

be insignificant. We choose the departure times for differen

EVs randomly according to a normal distribution with the
scheme to manage a group of households. Toward this end,mean of 7 A.M. and the standard deviation of 2 hours. The
consider a community of 100 householdd & 100). We also arrival time is drawn randomly according to another normal
assume that all EVs are Nissan Leaf whose specifications saé$tribution with the mean of 6 P.M. and the standard dewmati
as battery capacity, maximum charging/discharging power af 2 hours. These parameter settings were suggested by [42],
described in the previous section. We take building thermahich were established by using the data set given in [30].
parameters from [23] as mean values for thermal parameteraily travel distance also follows a log-normal distritmuti
houses in the community. Each thermal parameter (resiestamgth the mean of 32 miles and a standard deviation of 24 miles
and capacitance) of each house is chosen to be uniforril]. Based on EV ownership information [30], we assume
distributed in the interval of +/- 28 around the mean value tothat there are 9 households which have no EV, 32 households
represent the diversify of houses in the community. In icact each of which has 1 EV, 36 households each of which has
the size of AC/heater units would be chosen based on the s&z&Vs, 12 households with 3 EVs each, and 11 households
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each of which has 4 EVs. Therefore, there are 184 EVs under
consideration. There are ab@5t% of vehicles do not travel all
day according to [14], [17], [30]; therefore, we set 64 EV$ ou
of the 184 EVs to be available at home all day. For remaining
EVs, their travel patterns (departure time, arrival timad a
travel distance) follow the normal and lognormal distribos

as described above.

& 150

—+— 3 = 1, Community
—#— 5 =1, Individual
—— 5 =2, Community
——3 = 2, Individual

Electricity cost

0.2 024 0.28 0.32 0.36

w ($/°C)

(o} 0.04 0.08 0.12 0.16 0.4

Fig. 9. Comparison optimal electricity cost under communitgdzhoptimal
and individual-based optimal solutions (No V2G)

To ease the analysis and presentation, we assume that all

households choose the same valuewpf= w and same the

11
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—— Individual

Imported power (kW)
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Time (hr)

(a) Imported power

—6—HVAC
—%—EV Charging -
—#— EV Discharging

Power (kW)

[o] 2 4 6

10 12 14
Time (hr)
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(b) Power consumption, charging/dischargimgromunity)

. Fig. 10. Imported d tion, chargingidisgi
value of 6, = ¢ in our model. We evaluate the performancgﬁ day n’g‘pv";gijvg?g;‘ ’;P§°§”ir2°£’£)s umption, chargingieiging (very

for two cases where the proposed optimization framework is
applied for the whole community with 100 households and for

individual households, respectively. The results comasing by the proposed model, and benefits of optimization of EV and

to these two cases are indicated as “Community” and “Indiome energy scheduling for multiple houses in a residential
community.

vidual” in Figs. 9, 10(a), respectively. Fig. 9 shows theimat
costs for both control schemes in thery hot summer day.
It can be observed that the total electricity cost is reduced
quite significantly when we optimize the energy usage for th
whole community compared to the case when each household
optimizes its energy consumption separately. The perfocma [2]
gain is about 2.

Fig. 10(a) plots the power imported from the grid far
hot summer day and w = 0.02 $fC. Fig. 10(b) illustrates
the total power consumption and charging/discharging due b4
ACs and EVs in the community. As can be seen, the total
energy imported from the grid in the community-optimizatio
scheme is zero during peak hours (1P.M to 6P.M). When eaqﬂ
household applies our optimal scheme separately, the tota
energy imported from the grid is non-zero for several high-
price hours. This “demand response” effect achieved by t
proposed community-optimization scheme is very desirable
since it helps reduce the peak demand in on-peak hours. In
addition, Fig. 10(b) shows that by exploiting EV dischargin
capability we can reduce the demand and save the electricigj
cost during high-price hours.

(3]

[9]
VI. CONCLUSION
We have proposed a unified framework to jointly optimize g,
the EV and home energy scheduling considering user comfort
preference. The proposed control model captures diffémynt
modeling aspects including thermal dynamics, EV travel a ﬁ]
user occupancy patterns, as well as operational consraint
of the HVAC system and EVs. We have presented extensive
numerical results to demonstrate the impacts of diﬁerthz]
parameters on the electricity cost, the significant gairnexelal
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